Biochar impact on chromium accumulation by rice through Fe microbial-induced redox transformation

Abstract

Iron (Fe) dissimilatory reduction might impact chromium (Cr) mobility in the rice rhizosphere, but it is poorly understood. We assessed rhizosphere microbes’ role in Cr immobilization and bioavailability by conducting the pot experiment to test different biochar sources (PMB - pig manure and PSB - pine sawdust) and phosphorus (P) levels impact on Cr mobility. Results showed that PMB application increased root biomass (23–65 %) and decreased root Cr concentration (46–74 %) regardless P treatment. However, P addition reduced root and shoot biomass in control and PMB treatments by 33–43 % and 25–26 %. Therefore, low P input is recommended in Cr-contaminated soil. Moreover, Geobacter was the key microbial groups which may be involved in promoting Cr release by increasing Fe dissolution. Finally, Geobacter and Fe dissimilatory reduction play a central role in Cr translocation and they should be considered in strategies to reduce rice Cr uptake by biochar application.

Publication
Journal of Hazardous Materials, 388, 121807
Peng Gao
Peng Gao
Assistant Professor

I am an analytical chemist trained in both environmental and biomedical sciences. My research focuses on multidisciplinary fields in environmental health sciences, environmental chemistry and toxicology, analytical chemistry, and metagenomics.